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Abstract.
Background: Although aging is the strongest risk factor for the development of Alzheimer’s disease (AD), it remains
uncertain if the blood DNA methylation clock, which reflects the effect of biological aging on DNA methylation (DNAme)
status of blood cells, may be used as a surrogate biomarker for AD pathology in the central nervous system (CNS).
Objective: We aimed to develop a practical model to predict for A/T/N-based AD biomarkers as the prediction targets using
the aging acceleration of blood cells.
Methods: We obtained data of North American ADNI study participants (n = 317) whose blood DNA methylation microarray
(Illumina HumanMethylation EPIC Beadchips) and cerebrospinal fluid (CSF) AD biomarkers (A�, t-tau, and p-tau) were
recorded simultaneously. Methylation clock was calculated to conduct machine learning, in order to predict binary statuses (+
or –) for A (corresponding to the lowered CSF A�), T (the elevated CSF p-tau), or N (the elevated CSF t-tau). The predictive
performance of the models was evaluated by area under curve (AUC) in the test subset within ADNI.
Results: Among the 317 included samples, 194 (61.2%) were A+, 247 (77.9%) were T+, and 104 (32.8%) were N+. The
degree of blood aging acceleration showed weak positive correlation with the CSF A� levels, even after adjustment with
APOE genotype and other covariates. However, the contribution of aging acceleration to improve the predictive performance
of models was not significant for any of A+, T+, or N+.
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Conclusion: Our exploratory attempts could not demonstrate the substantial utility of the peripheral blood cells’ methylation
clock as a predictor for A/T/N-based CSF biomarkers of AD, and further additional work should be conducted to determine
whether the blood DNAme signatures including methylation clock have substantial utility in detecting underlying amyloid,
tau or neurodegeneration pathology of AD.
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INTRODUCTION

Positive amyloid-� (A�) accumulation in brain,
one of the hallmarks of Alzheimer’s disease (AD)
pathology [1], greatly increases its prevalence as
aging (e.g., from 10% in 50-year-olds to more than
40% in 90-year-olds in general populations) [2]:
although its molecular mechanisms remain uncertain,
aging is actually the strongest risk factor of AD [3].
Preclinical AD, which corresponds to positive brain
A� accumulation in healthy individuals without evi-
dence of cognitive decline [4, 5], is becoming the
focus of clinical trials aiming to develop disease-
modifying therapies for AD [6]. Along with such
recent trends, a blood biomarker that is less invasive
than lumbar puncture and that can increase the prior
probability for CNS AD pathology including positive
A� accumulation has been much desired.

As one of the blood-based biomarkers that is
related with both aging and AD, DNA methylation
(DNAme) can be considered as one suitable modal-
ity candidates. DNAme is an epigenetic mechanism
involved in the regulation of gene expression which
dynamically changes throughout the entire cellular
lifetime including throughout aging [7], and its alter-
ation is also closely associated with the AD. For
example, the aberrant DNAme patterns have been
found in the AD brain [8, 9], and furthermore, “aging
acceleration” defined as an excess in the estimated
biological age calculated based on the DNAme status
( = methylation clock) compared to the actual chrono-
logical age [10], is reported to be associated with AD
pathological features such as amyloid load or neuritic
plaques in the brains of AD patients [11].

Although to date it remains unclear how, mecha-
nistically, the methylation clock is linked to aging,
it has potential as a biomarker of aging-related dis-
ease or mortality [12]. The methylation clock has
some advantages over the whole DNAme signature
data in that it is the single numerical value for each
sample, representing the DNAme signatures of an
enormous number of CpG sites, and therefore it has
better interpretability than the whole DNAme data
itself. In addition, by using the methylation clock,

we can avoid the “curse of dimensionality” which
reduces statistical power in the DNAme analysis [13],
and we can handle the DNAme data in a more efficient
way.

Since a certain proportion, if not a large portion, of
brain DNAme status is known to be reflected by the
peripheral blood DNAme within each individual [14,
15], the AD-related aging acceleration in brain may
also be reflected by the methylation clock in the blood
cells at least partly. It is also reported that the aging
acceleration in blood cells is associated with cogni-
tive decline [16] or general AD risks such as higher
blood pressure or smoking behavior [17]. Based on
these earlier studies, here we hypothesized that the
aging acceleration in blood cells may be used as a
surrogate of CNS AD pathology. Blood DNAme as
a biomarker for AD, long expected as in the case of
other diseases such as early cancer [18] but has been
inconclusive for AD so far [19–21], may be achieved.

To this end, in this discovery study we aimed to
construct a practical model to predict A/T/N-based
AD biomarkers as the prediction targets using the
aging acceleration of blood cells. The A/T/N classi-
fication has originally been developed as an unbiased
descriptive classification that is more closely-related
with the AD pathology than the clinical diagnosis
[22], and by using the A/T/N classification [22], we
expect to avoid current diagnostic confusion as to the
clinical staging [22], which may have been one of the
causes of inconclusive results among earlier studies
on blood DNAme in AD [19, 20].

MATERIALS AND METHODS

Data acquisition and preprocessing

This study was approved by the University
of Tokyo Graduate School of Medicine institu-
tional ethics committee (ID: 11628-(3)). Informed
consent is not required because this is an
observational study using publicly available data.
We used the Alzheimer’s Disease Neuroimag-
ing Initiative (ADNI) study dataset [23] obtained
from the Laboratory of Neuro Imaging (LONI)
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(https://ida.loni.usc.edu) in October 2019 with the
approval of the data access committee. The ADNI
dataset provides a large number of DNAme data set
of a single platform (Illumina HumanMethylation
EPIC Beadchip array [24]) which is also equipped
with the cerebrospinal fluid (CSF) biomarker data
simultaneously, and is suitable for the purpose of
our study. The ADNI was launched in 2003 as a
public-private partnership, led by Principal Investi-
gator Michael W. Weiner, MD. The primary goal
of ADNI has been to test whether serial magnetic
resonance imaging (MRI), positron emission tomog-
raphy (PET), other biological markers, and clinical
and neuropsychological assessments can be com-
bined to measure the progression of mild cognitive
impairment (MCI) and early AD. For up-to-date
information, see http://www.adni-info.org.

In this study, we used the DNA methylation
microarray data (Illumina HumanMethylation EPIC
Beadchip array, provided in ‘.IDAT’ file format)
regardless of the participants’ cognitive status at-
index blood sampling. We included the microarray
data which is collected on the same day as of lumbar
puncture for CSF biomarkers: amyloid-beta (A�42,
pg/mL), total tau (t-tau, pg/mL), and phosphory-
lated tau (p-tau, pg/mL) as listed on the data file
‘UPENNBIOMK MASTER.csv’. A few of sample
data not containing all three CSF biomarkers (A�,
t-tau, and p-tau) were excluded from the analysis.
To prevent possible data-leakage between the train-
ing and test datasets, we excluded the duplicated
DNAme data obtained from the same participant even
if sampled at different times. Eventually, we included
n = 317 samples derived from n = 317 unique partic-
ipants.

Included samples were categorized according to
the A/T/N system by 3 binary (+ or –) items [22],
where “A” refers to whether or not the CSF A� is low-
ered (<192 pg/mL), “T” refers to whether or not the
CSF p-tau is elevated (>23 pg/mL), and “N” refers to
whether or not the CSF t-tau is elevated (>93 pg/mL).
The threshold values mentioned here are based on
earlier literature [23]. We also obtained the binary (+
or –) status of amyloid PET (AV45). Although the
original A/T/N system refers to CSF A� or amy-
loid PET for “A”, CSF p-tau or tau PET for “T”,
and CSF t-tau or FDG-PET or structural MRI for
“N” [22], in this study we predominantly refer to the
CSF data for A/T/N classification: this is because the
timing of amyloid PET and blood sampling in each
case occasionally differ, and in some cases there is
a discrepancy in the positivity between the CSF A�

and amyloid PET or between the CSF t-tau and brain
MRI.

We also obtained the clinical features of the
included cases, such as follows: age at blood sam-
pling, sex (male/female: binary), the number of
APOE �4 allele(s), ethnicity (white or not: binary),
smoking history (yes/no: binary), education years,
diagnosis at the timing nearest to the blood sam-
pling, and the total Mini-Mental State Examination
and Alzheimer’s Disease Assessment Scale-cog13
scores at the timing nearest to the blood sampling:
the difference between the timing of clinical assess-
ment and the timing of blood sampling was median
10 days (interquartile ranges (IQR): 1∼21 days).

Microarray processing procedure

All the following data handling and analysis were
carried out using R 3.5.1 (R Foundation for Statisti-
cal Computing, Vienna, Austria), in macOS Mojave.
First, microarray data (in ‘.IDAT’ files) were read
using the R package {minfi} [25], and annotated
with the EPIC manifest file. For preprocessing, the
“noob” method was used [24], and low-quality sam-
ples were excluded from the analysis by using minfi.
We then converted the DNAme data to methyla-
tion level (beta value) matrix, normalized it with
the “PBC” method implemented in the {ChAMP}
function [27]. Thereafter the SNP-related probes or
probes of which detection p-value is less than 0.01
were further filtered-out by the ChAMP function. At
this point, there is a DNAme data matrix contain-
ing beta values [0–1] of more than 700,000 + CpG
sites for each case. 188 batches were run in total and
there was a batch effect (p < 0.05) as confirmed using
the ChAMP function, the matrix is further batch-
corrected using Combat function of R package {sva}
[27] without including the A/T/N binary annotations
as the covariates in Combat: this is because in practi-
cal situation the correct labeling of the test dataset
should be unknown. The differentially-methylated
probe (DMP), the CpG site of which methylation
level [0–1] is statistically different between the two
subgroups of interest (e.g., A+ versus A–, T+ ver-
sus T–), was calculated using the function of ChAMP
package.

Epigenetic aging calculation

Epigenetic aging was calculated using the online
software (https://dnamage.genetics.ucla.edu) which
is provided by Horvath et al. [10]. The above
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normalized DNAme data matrix was submitted to the
software, and the two measures of methylation clock
were obtained for each case: intrinsic epigenetic
aging acceleration (IEAA) and extrinsic epigenetic
aging acceleration (EEAA). The IEAA is defined as
the residual from a multivariate model regressing esti-
mated Horvath epigenetic age on chronological age
and blood cell counts, and subtracting the effect of
aging-related changes in blood cell counts allows us
to measure “pure” epigenetic aging effects [10, 17,
28]. EEAA is defined as the residual from a univariate
model regressing the estimated age on the actual age
[10, 28]: EEAA reflects IEAA as well as the immune-
related changes in the blood cell counts following the
aging [10, 17, 28].

Model training and evaluation

The data processing flow for model training and
evaluation is outlined in Fig. 1. Whole samples were
randomly split into training and test subsets at a pro-
portion of approximately 1 : 1 by using the R package
{caret} function [29]. These datasets were split so
that the distribution of the A/T/N-based classification
becomes approximately equal between the training
and test subsets, as well as the clinical features (age,
sex, the number of APOE �4 allele(s), and history of

smoking) do not have significant difference in their
distribution between the training and test subsets (as
confirmed by false discovery rate (FDR) ≥0.05).

We set either A+, T+, or N+ as a target to pre-
dict using IEAA or EEAA, sex, ethnicity, the number
of APOE �4 allele(s), and smoking history. These
binary categories were assessed separately instead
of the A/T/N multi-category as target, because the
A/T/N categorization yields considerable imbalance
in its classified cases (e.g., there were as many as
91 cases with A + T + N+, whereas there were 0
cases with A + T–N+, 1 case with A–T–N+, and 12
cases with A–T + N+), and that we cannot evaluate
the performance of multi-class predictive model by
area under the curve (AUC). We included ethnicity
since it is reported to affect the level of DNAme,
but not included the general risk factors for coro-
nary heart disease such as hypertension, diabetes, or
dyslipidemia, in reference to the earlier study com-
prehensively examining the features of DNAme as
conducted by Horvath et al. [30]. Furthermore, we
included the history of smoking because another ear-
lier study reported that it can affect the blood DNAme
status [31]. For training a model within the train-
ing subset, we used the ElasticNet algorithm using
the caret package, where the hyper-parameters were
tuned by the caret function automatically. During

Fig. 1. Data processing flow for model training and evaluation. The entire data are randomly split into training and test subsets at a ratio of
1 : 1. Models A1–B2 were trained based on the different combination of features (‘age’ refers to the chronological age), where model A2
included features from model A1 in addition to the AgingAcc, model B1 included features form model A1 in addition to the APOE, and
model B2 included features from model A1 in addition to the APOE and AgingAcc. The performance of these models was evaluated in the
test subset. Performance AUC was compared between models A1 and A2, and between models B1 and B2, using DeLong’s test. The whole
procedure was repeated 20 times. AUC, area under curve; AgingAcc, aging acceleration calculated based on the methylation clock and the
actual chronological age.
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training, 10-fold cross validation (cv) was repeated.
The model’s performance was then evaluated with
the AUC [0–1] of the model when applied to the test
subset, where the AUC = 1 in complete prediction and
AUC = 0 in complete inverse prediction.

To measure the usefulness of aging acceleration
to use as one of the variables to include into the
model, we compared the AUC by DeLong’ test using
R package {pROC} [32] between models with dif-
ferent combination of features, as follows: 1) model
A1 using age, sex, smoking history, and ethnicity, 2)
model A2 using age, sex, smoking history, ethnic-
ity, and either IEAA or EEAA, 3) model B1 using
age, sex, smoking history, ethnicity, and the number
of APOE �4 allele(s), and 4) model B2 using age,
sex, smoking history, ethnicity, the number of APOE
�4 allele(s), and either IEAA or EEAA. By compar-
ing models B1 and B2, we can assess the degree of
aging acceleration (IEAA or EEAA) as a helpful fea-
ture to predict for A/T/N in the condition where the
number of APOE �4 allele(s) is known, and by com-
paring models A1 and A2 we can see the degree of
aging acceleration as a helpful feature to predict for
A/T/N in the condition where the number of APOE
�4 allele(s) is unknown. We separately set the mod-
els depending on the conditions of the number of
APOE �4 allele(s) known/unknown, since the infor-
mation as to the number of APOE �4 allele(s) is often
unavailable in clinical situations despite its critical
importance to the development of AD [2]. Note that
the models were developed and evaluated separately
for each of IEAA and EEAA.

As shown in Fig. 1, in a single procedure we
compare two pairs of models (A1 versus A1, B1
versus B2) by DeLong’s test for each of 3 targets
(A+ or T+ or N+), obtaining 2 * 3 = 6 p-values.
These p-values were adjusted for multiple compar-
ison by Benjamini-Hochberg method [33], yielding
FDR. Then the whole procedure was repeated for 20
times in total, to evaluate how frequently the mod-
els including DNAme (models A2 or B2) may be
superior to the models not including DNAme (models
A1 or B1), regardless of the randomly-split subsets’
variability.

Statistical analysis

For numerical data, we used median and IQR
for summaries and t-tests for comparisons between
groups. For categorical data, we used frequency and
percentage to summarize, and mainly used Fisher’s
exact test for the group comparison. For determining

correlations between two numerical vectors, we used
Pearson’s correlation. p-value (or FDR) <0.05 was
considered as statistically significant if not men-
tioned otherwise. We used multivariate linear models
regressing the epigenetic aging (IEAA or EEAA) to
CSF biomarkers (A�, p-tau, or t-tau), sex, APOE
genotype, ethnicity, and smoking history to evaluate
the relationships between the epigenetic aging and
each CSF biomarkers.

RESULTS

Basic characteristics of the included participants
and microarray data

In total, n = 317 included samples were clas-
sified by the A/T/N system as follows: 43/317
cases (13.6%) were A–T–N–, 26 cases (8.2%) were
A + T–N–, 77 cases (24.3%) were A + T + N–, 91
cases (28.7%) were A + T + N+, 67 cases (21.1%)
were A–T + N–, 1 case (0.3%) was A–T–N+, and
12 cases (3.8%) were A–T + N+. There were no
A + T–N+ cases among those included in this study.
By dividing the data into individual items, we found
that 194/317 cases (61.2%) were A+, 247 cases
(77.9%) were T+, and 104 cases (32.8%) were N+.
The concordance between amyloid positivity of the
CSF and the amyloid PET had “substantial agree-
ment” with the kappa coefficient = 0.7058.

Basic characteristics of each A/T/N category are
summarized in Supplementary Table 1. Most of the
included cases were white ethnicity. Median age at
index blood sampling was the highest in A + T + N+
cases, followed by that in A + T–N–, and A + T + N–.
As for the diagnosis evaluated at the timing nearest
to the blood sampling, AD cases most frequently fell
into the A + T + N+ category, whereas MCI and cog-
nitive normal (CN) cases occasionally fell into the
A–T + N– or A + T–N– or A + T + N– categories.

The difference in methylation level between each
of these binary statuses within the whole sample was
relatively limited: there was only 1 DMP in A+ ver-
sus A–, 0 DMP for T+ versus T–, and 0 DMP for N+
versus N–. This small difference between the target
subgroups is also visualized in the MDS plots in Sup-
plementary Figure 1, revealing no clear separation
between the two subgroups (A–C).

Modeling with the aging acceleration

We then obtained the aging acceleration data for
each sample and evaluated its characteristics. The
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obtained methylation clock shows a clear correlation
with the actual chronological age (Supplementary
Figure 2A, coefficients = 0.692, p < 0.001). After
adjustment for sex, APOE genotype, ethnicity, smok-
ing history, CSF A�, t-tau, and p-tau, there is a weak
but significant correlation between the IEAA and
CSF A� (pg/mL) (coefficients = 0.016 (p = 0.035) in
linear regression) (Supplementary Figure 2B, coef-
ficients = 0.126 (p = 0.025) in Pearson’s correlation)
and between the EEAA and CSF A� value (coeffi-
cients = 0.017 (p = 0.017) in linear regression) (data
not shown, coefficients = 0.116 (p = 0.041) in Pear-
son’s correlation). However, there is no significant
correlation between the IEAA/EEAA and CSF p-tau
or t-tau values (data not shown).

We next evaluated the averaged predictive perfor-
mance of the 8 different models. Figure 2A represents
the AUC results targeting A+ in models A–D, where

the methylation clock is IEAA. Figure 2D shows the
AUC results targeting A+ in models A–D where the
methylation clock is EEAA. Similarly, Fig. 2B shows
the AUC results targeting T+ with IEAA, Fig. 2E
shows the AUC results targeting T+ with EEAA,
Fig. 2C shows N+ with IEAA, and Fig. 2F shows N+
with EEAA. In comparing between models A1 and
A2 or between models B1 and B2, significantly high
AUC for A+ or T+ or N+ was not observed in any
model pairs compared, across 20 times of random-
ization trials. These results suggest that incorporating
methylation clock into models might hardly increase
the predictive performance for A+, T+, or N+.

DISCUSSION

DNA methylation (DNAme) is an epigenetic
mechanism involved in the regulation of gene

Fig. 2. Degree of AUC performance improvement by incorporating aging acceleration. To measure the usefulness of aging acceleration, we
evaluated the AUC between models with different combination of features (model A1–B2). Panels A and D show the AUC results by 20
times of repeated trials predicting for A+ when IEAA (in A) or EEAA (in D) is included as epigenetic aging. Similarly, panels B and E show
the AUC results predicting for T+ when IEAA (in B) or EEAA (in E) is included as epigenetic aging. And panels C and F show the AUC
results predicting for N+ when IEAA (in C) or EEAA (in F) is included as epigenetic aging. The AUC results were compared between model
A versus B and between model C versus D in panels A–F: significantly high AUC for A+ or T+ or N+ was not observed in any model pairs
compared (as denoted by ‘FDR < 0.05 in 0/20’ in figures), across 20 times of randomization trials. In the box plot, upper and lower whiskers
correspond to the maximum and minimum range, and the range of box corresponds to the interquartile range. Y-axis corresponds to the value
of AUC. AUC, area under curve; AgingAcc, aging acceleration calculated based on the methylation clock and the actual chronological age;
IEAA, intrinsic epigenetic aging acceleration; EEAA, extrinsic epigenetic aging acceleration; FDR, false-discovery rate.
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expression during cellular development, activity,
aging, and degeneration [7, 14]. Because specific
patterns of blood DNAme changes are observed
in some systemic diseases such as early cancer or
chronic inflammatory diseases, blood DNAme has
been expected as a blood biomarker for their diagno-
sis [18].

As well, in this exploratory study, we aimed
to develop a predictive model for each of A/T/N
binary statuses in AD patients using methylation
clock calculated from the blood-derived DNAme
microarray data, in order to explore the potential of
peripheral blood DNAme as a practical predictor for
AD pathology. Our study used pathologically more
closely-related annotations as prediction targets, as
well as that we employed the methylation clock of
blood as one of the features representative for blood
DNAme. As a result, however, the significance of
epigenetic aging as a predictor for AD remains poor;
the performance improvement by adding epigenetic
aging into the model was not achieved for A+, T+ or
N+. These results suggest that peripheral blood epi-
genetic aging is currently not practically useful as it
is.

The poor contribution of aging acceleration to
performance improvement may be due to the small
difference in blood DNAme signatures between those
with or without CNS AD pathology, as observed in
the small number of DMPs between A+ versus A–,
T+ versus T–, and N+ versus N– in our dataset (Sup-
plementary Figure 1A). To date, the significance of
blood DNAme for the diagnosis of AD has been
inconclusive [20]: the reported genes or CpG sites
with differentially methylated vary between earlier
studies, and are generally not reproducible [21]. We
can explain from the pathophysiological or diagnostic
aspects: first, in terms of its pathophysiology, periph-
eral blood DNAme changes observed in AD patients
may essentially be irrelevant of AD pathology of
which disease locus should be confined to CNS, in
contrast to the lowered plasma A� level as repeat-
edly shown to be associated with the AD pathology
in CNS [34]. Despite a good correlation in some
of the DNAme signatures in between the brain and
blood [14, 15], the alterations in DNAme following
the pathological changes may not always be reflected
with each other. Indeed, it has been reported that
brain DNAme changes associated with AD pathol-
ogy did not directly reflect the DNAme changes of
the peripheral blood [19].

The diagnostic uncertainty for AD might be one of
the reasons that led to such weak association between

brain and blood DNAme changes: in earlier studies
examining blood DNAme for AD, the diagnosis of
AD/control for participants from whom the blood
samples were obtained has been based mainly on
the clinical criteria including NINCDS-ADRDA [21,
35–38] or less frequently on the histopathology of
AD [8, 19], but further rarely on the AD biomark-
ers such as amyloid PET or CSF A� [39]. This
means the identified differentially-methylated genes
may not always be associated with A� accumula-
tion in brain, but may rather be related to any causes
of cognitive decline including vascular dementia or
tauopathy or the common risk factors of cognitive
decline such as hypertension, dyslipidemia, diabetes,
or smoking. These reasons should also be applied to
the limited reproducibility of earlier blood biomarker
studies with different modalities such as proteome
[40] or metabolome.

For these reasons, in this study we intended to
salvage the potentially-confusing link between the
changes in brain and blood DNAme by directly target-
ing the A/T/N-based CNS pathological classification
of AD, which eventually failed by itself. Further addi-
tional work is needed to determine whether the blood
DNAme clock may really have substantial utility in
detecting underlying amyloid, tau, or neurodegen-
eration pathology of AD. We expect there remains
some chances by further technical ingenuities, such
as including whole DNAme signatures in addition to
the epigenetic aging while selecting highly-predictive
CpG sites. Since there was considerable incon-
sistency as to the candidate CpG sites of which
methylation level or its variance differs between AD
and control subgroups ( = differentially methylation
sites and differentially variated sites, respectively)
as reported by many earlier blood methylation stud-
ies [19–21], merely including the large number of
CpG sites as selected by the conventional filter model
[13] to include into the predictive model might not
work, because of the “Large p, Small n” characteris-
tics of high-throughput data like microarray. Instead,
unsupervised CpG sites-selection may be helpful to
increase the probability of identifying key CpG sites.
Furthermore, the difference in the substantial bio-
logical significance between cases with barely lower
CSF A� than threshold and those with barely higher
CSF A� than threshold would be vague (e.g., con-
sider difference in the biological significance of those
with A� = 190 (<192) and of those with A� = 195
(>192)), setting the continuous value of CSF A�,
p-tau, and t-tau as the regression targets instead of
categorical prediction for binary A/T/N statuses will
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enhance the flexibility of the models. In addition,
including DNAme clock cooperatively with other
epigenetic aging markers such as histone modifi-
cation or chromatic remodeling [12], or integrating
data from multiple omics modality (e.g., methylome,
proteome, and metabolome), may enhance the poten-
tial utility as a blood-based biomarker for CNS AD
pathology.

Our study includes some limitations. Not all the
potentially confounding factors that can influence the
epigenetic aging such as ethnicity or medical his-
tory [30] were included in the predictive models,
which may have impaired their accuracy. In addition,
although we referred to the CSF data alone to catego-
rize participants by the A/T/N system, data of other
testing modalities, such as amyloid PET for A+ or
structural brain MRI for N+ should also be consid-
ered. We also need to address how to deal with the
discrepancy of results within the same A/T/N cate-
gories (e.g., elevated CSF A� but positive amyloid
PET). Furthermore, models in this study are evalu-
ated specifically within the ADNI dataset alone of
which A/T/N proportion should differ from other
cohort studies, so that the external validation in other
datasets is essential.

To conclude, despite efforts to derive a good
predictive model, our current attempt failed to
demonstrate the potential efficacy of the peripheral
blood-derived methylation clock as a practical pre-
dictor of A/T/N-based CNS biomarkers of AD as it
is. Further model refinement is needed to enable the
DNAme signatures not limited to epigenetic clock to
be used as a predictor for CNS AD pathology.
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